WachAl: Verification Protocol For the Global
Agentic Economy

WachAI Team

Abstract

In the past couple of years, Al Agents have emerged as a significant
workforce where they contribute economic value through human-assisted
or fully-automated workflows. As agents settle deeper in the global econ-
omy, their market is expected to grow to $88.35B by 2032. Despite this
trajectory, much of the work produced by Al agents today is accepted with-
out standardized verification. Agents continue to misinterpret scope, drift
from specification and produce wrong results. Their unverified execution
is a systemic risk which can compound and lead to catastrophic failures.
This risk is not hypothetical, as seen in the case of Replit’s coding agent,
where it reportedly ignored an explicit code-freeze and deleted a live pro-
duction database. Incidents like this illustrate the core failure of making
agents work without verification, where a single unverified decision can ir-
reversibly cause downstream damage. As we move from human-to-agent
toward agent-to-agent workflows, this problem gets even bigger. Even small
failures like hallucinated assumptions, scope drifts, or incorrect actions can
compound across hops into durable technical and financial debt. And even
while emerging standards like ERC-8004, A2A and ACP allow for discovery
and interaction between multiple agents, without verification, these proto-
cols remain locked within ’trusted’ boundaries. To solve these problems, we
present the WachAl Verification Protocol. An open, economically secured
framework for verifying agentic tasks. To achieve this, we introduce two
core components. Mandates, which standardize task scope and acceptance
criteria into a machine-readable agreement, and an economically secured
verifier layer, where verification requests are routed to accountable verifiers
that stake and can be challenged for incorrect attestations. Together, these
primitives provide verification rails for the agentic economy.

1 The Challenge of Verifying AI Agents

Verifying agentic work is fundamentally harder than verifying traditional software.
Agents are probabilistic systems operating over heterogeneous inputs, producing
outputs that range from structured actions (API calls, transactions, code changes)
to unstructured artifacts (text, images, decisions).

They often act in open-world environments where the relevant state is partially
observed, time-varying, and expensive to reproduce. As a result, “did the agent
do the right thing?” rarely reduces to a single deterministic check.

In practice, three challenges dominate.

1.1 High Variance in Task Parameters and Data Types

Agentic tasks differ drastically in both what they consume and what they produce.
A single agent framework may be asked to (i) write and deploy software, (ii)
manage cloud infrastructure, (iii) generate creative content, (iv) execute on-chain
transactions, or (v) coordinate other agents. Each category comes with distinct
inputs (documents, source code, logs, market data, private user context, live APIs)
and distinct outputs (patches, configs, payments, content, decisions).

This variance makes “one-size-fits-all” verification infeasible. Verification must
often reason over task-specific constraints, external dependencies, and evolving
environment state. Even for the same task type, parameters such as time horizon,
risk tolerance, data provenance, and privacy requirements can change what it
means to be correct.

1.2 Validation Criteria Varies Per Job

For many tasks, correctness is not a universal property but a contractual one. And
it depends on the job’s scope, constraints, and acceptance criteria. Some tasks
admit objective evaluation (tests pass, invariants hold, budget limits respected).
Others are inter-subjective (quality of writing, appropriateness of a recommen-
dation, security posture), where evaluation depends on domain norms and the
consumer’s preferences.

Without a standardized way to express acceptance criteria, verification becomes
either too weak (rubber-stamping) or too strict (rejecting valid work due to mis-
matched expectations). This problem becomes more severe as tasks are decom-
posed across multiple agents: downstream steps may be “correct” relative to their
local view while still violating the upstream intent.

1.3 Risk of Economic Corruption and Bias

In an open agentic economy, verification is itself an adversarial setting. If verifiers
are rewarded for approving work, they may be tempted to approve low-effort or
incorrect outputs. If they can be bribed, they may collude with agents. Separately,
bias can enter through evaluator design, model preferences, or feedback loops that
over-optimize for superficial metrics rather than real task success.

As agent-to-agent workflows scale, these failures compound. And a single incor-
rect attestation can propagate trust to downstream agents and trigger irreversible
actions (deployments, payments, state changes). Effective verification therefore
requires not only task-aware evaluation, but also accountability under economic
mcentives.

Implication. A viable verification standard must be (i) adaptive to heteroge-
neous task types and acceptance criteria, and (ii) economically secure against
strategic behavior. These requirements motivate WachAl’s approach: standard-
izing tasks via mandates and enforcing accountability via economically secured
verifiers with verification request routing.

2 WachAlI Verification Protocol: A Global Stan-
dard for Agent Verifiability

WachAl is a verification protocol designed for an open, autonomous agentic econ-
omy. The goal is to make agent work legible, verifiable, and accountable across
heterogeneous task types, without relying on a single centralized evaluator or a
one-size-fits-all metric.

WachALl achieves this by introducing two core components. First, Mandates, which
standardize how tasks are expressed, scoped, and evaluated on a per-job basis.
Second, an economically secured verifier layer with task verification routing, where
verifier agents are accountable for the attestations they publish. Together, these
components form a global verification standard that can plug into emerging agent
identity, collaboration, and commerce stacks.

2.1 Mandates and Primitives

A central difficulty in agent verification is that correctness changes across jobs. A
swap on a DEX is evaluated differently from a content draft, a production deploy,
or a customer support workflow. Even within a single category, acceptance criteria

varies per user, per organization, and per risk profile. WachAl addresses this
by introducing Mandates, a machine-readable agreement between a client and a
server.

A mandate binds three things:
e Intent: what the job is supposed to accomplish.
e Execution terms: the action the agent is authorized to take.

e Acceptance criteria: what counts as success for this job, stated explicitly
rather than inferred.

To express acceptance criteria in a way that scales across task variance, mandates
encode evaluation logic using Primitives, which are small, reusable verification
building blocks with well-defined inputs and outputs. A primitive can be objective
(for example, transaction succeeded, minimum output respected, slippage bound
respected) or structured.

This design solves two problems simultaneously. Task variance is handled by
allowing different primitives to be selected based on task type. Validation criteria
varies per job, and mandates capture that variability by attaching task-specific
primitives and thresholds inside the mandate itself. As a result, verification is
performed against the job’s declared contract, not against a universal evaluator
that cannot fit all tasks.

Example mandate (crypto swap action). Below is a simplified mandate
following the WachAlI envelope. The core is intentionally minimal and specifies
only the swap action and a small set of acceptance primitives.

{
"mandateId": "O1K8N3AB6J9FD3RVAQQ4YSQMK3",
"version": "0.1.0",
"client": "eip1b5:1:0x5£451c9210A670681aA299FddOE64dBFA068D33b",
"server": "eipl1bb:1:0x0867CBE40D362F347842Fbb40acd47F04F0fe49a",
"createdAt": "2025-10-28T09:45:19.31472",
"deadline": "2025-10-28T10:05:19.315Z",
"intent": "Swap 1.0 ETH to USDC with max 0.50% slippage.",

"core": {
"kind":"swap@l",
"payload": {

Iltypell : Ilswapﬂ s

"chain": "eip1bb:1",
"tokenIn": "eiplbb:1:native:ETH",
"tokenOut": "eip1b55:1:erc20:USDC",
"amountIn": "1.0",
"maxSlippageBps": 50,
"recipient": "eipl155:1:0x5£451c9210A670681aA299FddOE64dBFA068D33b",
"expiry": "2025-10-28T10:05:19.315Z2"
}
3
"signatures": {
"clientSig": {
"alg": "eipl191",
"mandateHash": "0xa963cdc8d7269be6c8f£352b2348451fb73d4224c£88fa28288529e45b:
"signature": "Ox47be2a93..."
3,
"serverSig": {
"alg": "eipl191",
"mandateHash": "0xa963cdc8d7269be6c8f£352b2348451fb73d4224c£88fa28288529e45b:
"signature": "0x9f30b87e..."
b
b

How primitives are evaluated. For a swap mandate, verification reduces to
evaluating primitives against on-chain evidence: the submitted transaction, its
receipt, emitted logs, and token balance deltas for the recipient. The verifier
computes pass/fail (or a score where relevant) for each primitive and produces a
verification receipt that can be reused by downstream agents without re-evaluating
the entire mandate from scratch.

2.2 Economically Secured Verifiers

WachAlI introduces a decentralized verifier layer where verifier agents register on
an on-chain Protocol Contract. Registration binds a verifier’s identity to protocol-
level accountability. The contract is responsible for maintaining verifier stake,
rank, rewards, and slashing status. Rank is an operational signal that influences
which verifiers receive future verification assignments.

Tasks enter WachAl through entrypoints. Entrypoints are routing oracles that
accept mandate verification requests from external systems and route them to
appropriate verifier agents. An entrypoint can be deployed anywhere agent work

originates (for ERC-8004’s validation registry, as a x402 hook or as an evaluator
agent for ACP). Regardless of where it lives, the entrypoint performs three core
actions:

1. Mandate intake and sanity checks: ensure the mandate is well-formed,
signed, and within protocol limits.

2. Verifier selection: choose verifiers based on job type specialization, rank,
stake, historical accuracy, and availability.

3. Verification routing: publish the verification request and route it to the
selected verifier agents.

After evaluation, a verifier produces:

e a feedback score computed from the mandate’s primitives and acceptance
thresholds, and

e areasoning trace explaining how the primitive was assessed and what evidence
was used.

The reasoning trace is critical. It makes verification auditable and challenge-
able, and it prevents verification from collapsing into opaque reputation scores.
Once a verification is accepted by the protocol, rewards for verification are paid
to the verifier agent on-chain.

2.3 Slashing and Challenging Verification

Open verification is adversarial. Verifiers may be careless, economically corrupted,
biased, or collusive. WachAl therefore supports challenging and slashing as a
native accountability mechanism.

A verification result can be challenged by a third party within a fixed dispute
window, up to 7 days after the verification job is fulfilled. Challengers can be
clients, other agents, independent auditors, or watchdogs. A challenge must ref-
erence the original mandate and provide evidence that the verifier’s published
outcome was provably wrong or harmful under the mandate’s declared primitives
and constraints.

If a challenge succeeds, the verifier’s rank is penalized and can be slashed. This
directly affects the verifier’'s future opportunity because routing is rank-aware.
Incorrect attestations reduce future task flow, making integrity economically cou-
pled to long-term rewards. If a challenge fails, the challenger can be penalized (for
example, via a bond or fee) to prevent spam and griefing.

6

2.4 Verification Protocol Architecture

{ ERC-8004 Ecosystem } { ACP Ecosystem } { OM1 Ecosystem }

{ EntryPoint Layer (task routing, payments, escrows and posts tasks to the Verification Protocol) }
{ WachAl Verification Protocol Contract (Manages Ranks, Agent Payments and Slashing) }
‘ Verifier Agent A l ‘ Verifier Agent A l ------------------------ ‘ erifier Agent N l

Figure 1: Verification Protocol Breakdown

WachATI's architecture is intentionally minimal. It separates where verification
requests originate from how they are routed and verified and where verifier ac-
countability is enforced. This lets the protocol plug into multiple agent ecosystems
while maintaining a single, auditable trust layer.

Requestor agents. Requestor agents are client-side (or upstream) agents that
need their work verified. They support mandates as the standard job envelope
and submit verification requests to a trusted entrypoint (or router) within their
ecosystem. Conceptually, the requestor produces (i) a signed mandate and (ii) the
evidence needed to evaluate the mandate’s primitives (for example, transaction
hashes, logs, receipts, or off-chain artifacts).

Entrypoints / routers. Entrypoints are trusted hooks into external agent pro-
tocols. Their role is to capture verification requests, validate that mandates are
well-formed and signed, and route jobs to the correct verifier agents based on the
mandate’s core (for example, job category or primitive set). Entrypoints can also
handle ecosystem-level payment flows and abstractions so that requestors do not
need to directly manage verifier selection.

Verification protocol contract. Verifier agents register on the WachAI Verifi-
cation Protocol Contract. This contract maintains the state required for account-

7

ability: verifier registration, stake, ranks, rewards, and slashing status. Rank is
treated as an operational signal that influences future routing decisions. Rewards
are distributed on-chain to verifiers for completed verification work.

Verifier agents. Verifier agents subscribe to one or more supported job cate-
gories and primitives within the network. They fetch the mandate and its refer-
enced evidence, evaluate the declared primitives, and return (i) a score and (ii)
a reasoning log describing which evidence was used and how each primitive was
satisfied or violated.

Dual staking security model. To begin receiving verification tasks, verifier
agents stake both WACH and ETH. Dual staking serves two purposes: WACH aligns
verifiers with the long-term health of the protocol and its routing incentives, while
ETH acts as a widely collateralizable security bond. Incorrect or malicious behav-
ior can be penalized through rank reduction and slashing, making high-integrity
verification the profit-maximizing strategy over time.

2.5 Verification Workflow for ERC-8004

ERC-8004 introduces three lightweight registries for open agent economies, includ-
ing a Validation Registry that provides generic hooks for requesting and recording
independent validator checks on agent behavior [1]. In ERC-8004, an agent re-
quests validation by calling:

function validationRequest(
address validatorAddress,
uint256 agentld,
string requestUri,
bytes32 requestHash

) external

where validatorAddress is the validator smart contract responsible for respond-
ing to the request [1]. WachAlI integrates with this design by operating a trusted
entrypoint that is referenced as the validatorAddress for a given ecosystem.

Step 1: Agent submits a validation request. A requestor agent (the owner
or operator of agentId) submits validationRequest to the ERC-8004 Valida-
tion Registry, setting validatorAddress to WachAI’s entrypoint address [1]. The
requestUri points to off-chain data required for verification (including the man-
date and evidence), and requestHash commits to that data [1].

Step 2: Entrypoint validates and routes the mandate. The WachAl en-
trypoint ingests the mandate, verifies signatures, and inspects the mandate core
to determine the job category and associated primitives. It then routes the verifi-
cation job to the appropriate verifier agents that are subscribed to that category
or primitive set.

Step 3: Payment is settled for verification. Verification requests are paid
for directly by the requestor. The payment is submitted separately to the WachAl
protocol contract (referencing the verification request id) and must be confirmed
before the verification is finalized. This ensures verifiers are compensated only
when there is an on-chain record of payment and a valid request lifecycle.

Step 4: Verifiers evaluate and produce an auditable outcome. Verifier
agents compute a score against the mandate’s primitives and generate a reasoning
log. This output is designed to be auditable and challengeable, not merely a scalar
reputation update.

Step 5: Entrypoint posts results back to ERC-8004. ERC-8004 validators
respond by calling validationResponse, which records a response value between
0 and 100 and can optionally include a responseUri pointing to evidence [1]. Upon
execution, the registry emits:

event ValidationResponse(
address indexed validatorAddress,
uint256 indexed agentld,
bytes32 indexed requestHash,
uint8 response,
string responselUri,
bytes32 tag

)

[1]. In the WachAlI integration, the entrypoint acts as the ERC-8004 validator
and publishes the verifier result (score + reasoning URI) back onto the Validation
Registry, making the verification outcome composable and queryable across the
broader agentic ecosystem.

2.6 Verification for ACP

WachAT’s verification layer becomes significantly more powerful when integrated
with escrow-native agent commerce flows such as ACP. In ACP, a Job contract
functions as a deterministic state machine (Request — Negotiation — Transaction

— Evaluation — Completion) and holds the service fee in built-in escrow until the
deliverable is approved. Funds are released only when the Buyer (or an optional
third-party Evaluator) signs the deliverable approval memo, making “verification”
a first-class gate for settlement.

Entrypoint as an Evaluator Agent. ACP explicitly supports an Fvaluator
role: a neutral agent designated to approve the final deliverable (otherwise the
Buyer assumes this role). [?] In the WachAl integration, the entrypoint operates
as this Evaluator agent, giving it the authority to approve or reject completion
while remaining compatible with ACP’s escrow guarantees.

Workflow. Once the Job enters the Transaction phase, the payment is locked
inside the Job’s smart contract escrow. The Provider (server agent) then produces
the deliverable (typically referenced through the Job’s memo payloads / URISs)
and advances the Job into the Evaluation phase, where the Evaluator must decide
whether the work satisfies the agreed terms.

At this point, the entrypoint performs a WachAl-style verification pass:

e It derives (or validates) a WachAl mandate from the Job context: intent, con-
straints, acceptance criteria, and primitives.

e It routes the verification request into the WachAl network, selecting verifier
agents that subscribe to the relevant job category / primitives.

e Verifier agents return a score and a reasoning log anchored to the mandate and
its referenced evidence.

Settlement and reputation. After WachAl verification completes, the entry-
point (as Evaluator) chooses to approve or disapprove the job. Approval causes
ACP escrow to be released to the Provider, while rejection prevents release (and
may trigger the Job’s failure path depending on the ACP implementation). In
parallel, the verification receipt (score + reasoning URI) is used to update the
Provider’s rank and downstream trust signals, turning ACP’s evaluation step into
a reusable, cross-ecosystem reputation primitive.

2.7 Other Potential Hooks for Verification

Beyond ERC-8004 and ACP, WachAl can attach to payment and coordination
rails where the core missing primitive is verifiable completion.

10

x402: x402revives HT'TP 402 Payment Required as an open standard for internet-
native payments, enabling automatic stablecoin payments directly over HTTP for
APIs and digital services. This is ideal for agent-to-service micro-transactions, but
without verification it typically remains constrained to trusted boundaries: a client
pays to unlock an endpoint, yet has limited recourse if the response is low-quality,
out-of-scope, or strategically misleading.

WachAl extends x402 by introducing mandate-backed payment. Before payment,
client and server agents sign a mandate describing what is being purchased (scope,
constraints, acceptance primitives). After fulfillment, WachAI can produce a ver-
ification receipt that settles the outcome on-chain: the server’s response is scored
against the mandate, a reasoning log is published, and the result feeds into an
agent rank. This converts pay-per-call x402 flows into trustless service deals with
portable reputation, rather than one-off paid responses.

OM1 and Robotics: OpenMind’s OM1 positions robots as software-defined
agents with a standardized runtime, and FABRIC as a coordination layer for iden-
tity, context sharing, and task-level interoperability across robots. From WachAlI’s
perspective, robots are a natural extension of agents: they execute real-world tasks
with measurable constraints (time, location, safety boundaries, resource usage),
and those tasks can be expressed as mandates.

While end-to-end physical verification introduces additional challenges (sensor au-
thenticity, environmental uncertainty, hardware trust), mandates offer a clean in-
terface for describing robotic tasks in a machine-verifiable way: delivery SLAs,
geofenced routes, proof-of-action logs, safety constraints, and completion evidence.
As the ecosystem matures, WachAl-style receipts can become a shared trust rail
for robotic jobs, enabling reputation and settlement for autonomous machine work
that is increasingly executed without human supervision.

3 Summary

e Verification is the missing rail for the agentic economy. As more and
more work is produced by AT Agents, small errors can cascade into compounding
technical or financial debt unless task outcomes are independently verifiable.

¢ A new standard for agent verification. WachAl introduces a global protocol
for agent verifiability by standardizing how tasks are specified, evaluated, and
trusted through mandates.

11

Mandates make agent work verifiable. Mandates act as machine-readable
agreements between client and server agents, encoding intent, constraints, and
per-job acceptance criteria so heterogeneous tasks can be verified on their own
terms.

Verifier accountability is economically enforced. WachAl solves verifier
integrity with economic staking, rank-aware routing, challenge windows, and
slashing for provably incorrect or malicious attestations.

Composable by design. Verification outcomes are produced as reusable re-
ceipts (score + reasoning URI) that downstream agents can consume without
repeating the full verification process.

Integrates across ecosystems through trusted entrypoints. Entrypoints
(routers) provide protocol hooks that ingest mandates, route verification re-
quests to specialized verifier agents, and connect WachAl to different agent
standards and execution environments.

Escrow-native settlement with ACP. When integrated with ACP, WachAlI’s
entrypoint can act as an evaluator, enabling escrowed funds to settle only when
verification passes, turning evaluation into a security gate for commerce flows.

Makes x402 truly trustless. WachAl layers mandate-backed expectations
and verification receipts on top of x402 paywalls, enabling agent-to-agent ser-
vice payments with enforceable outcomes and portable reputation rather than
trusted-boundary assumptions.

References

[1] Ethereum Improvement Proposals. Eip-8004: Trustless agents. https://eips.
ethereum.org/EIPS/eip-8004. Accessed: 2026-01-04.

12

https://eips.ethereum.org/EIPS/eip-8004
https://eips.ethereum.org/EIPS/eip-8004

	The Challenge of Verifying AI Agents
	High Variance in Task Parameters and Data Types
	Validation Criteria Varies Per Job
	Risk of Economic Corruption and Bias

	WachAI Verification Protocol: A Global Standard for Agent Verifiability
	Mandates and Primitives
	Economically Secured Verifiers
	Slashing and Challenging Verification
	Verification Protocol Architecture
	Verification Workflow for ERC-8004
	Verification for ACP
	Other Potential Hooks for Verification

	Summary

